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NOMENCLATURE 

L, width of channel; 
Pr, Prandtl number (V/K); 
Ra, Rayleigh number (gx AT I?/Kv); 

t, time; 
T -’ temperature; 
T, temperature in the basic state; 
Ta, Taylor number (40’ c/v’); 
x> Y, r, rectangular co-ordinates; 
w, velocity perturbation in the z direction. 

Greek symbols 

x, coefficient of thermal expansion; 
& amplitude of modulation; 
i z component of vorticity; 
0, perturbation temperature; 
K, thermal diffusivity; 
A, measure of enhancement of stability defined in 

equation (13); 
v, kinematic viscosity; 
$5 density; 
Q, angular velocity; 

9, 
nondimensional frequency; 
dimensional frequency. 

THE BASIC EQUATIONS 

A layer of fluid is contained between two infinite walls, a 
distance L apart, and rotates about the vertical direction with 
angular velocity 51. At the lower wall, the temperature is 

T/,,, = T’++AT+aATcosw*r, (1) 

whereas at the upper wall, the temperature is 

Ti,,, = TX-jA7’. (2) 

A Boussinesq fluid is assumed with density 

P = PR[l -a(T-TR)]. (3) 

The conduction solution satisfies 

dT a2T 
at="&?- (4) 

and can be expressed as 

T = T,+AT(L-22)/2L+eT,(z, t), (5) 

where T, satisfies (4) and the periodic temperature conditions 
at the wall. 

Subscripts 

R, 
C, 
4 

denotes a reference quantity; 
critical value; 
denotes the initial state. 

INTRODUCTION 

We now perturb the basic state by letting 

T= T(z,t)+e(x,y,z,t), (6) 

where 6 is assumed to be small enough that a linear stability 
analysis is valid. 

VENEZIAN [l] first demonstrated that a fluid, when heated 
from below in an oscillatory manner, can haue a higher value 
of the critical Rayleigh number for the onset of convection 
than when the fluid is heated with fixed tem~ratur~ at the 
boundaries. Although Venezian considered only small values 
of the modulation amplitude and considered only the case of 
“free-free” boundary conditions, his results are in qualitative 
agreement with those of Rosenblat and Tanaka [Z], who 
solved the same problem for finite values of the m~ulation 
amplitude and for the more realistic case of rigid wall 
boundary conditions. The results for low values of the 
frequency of modulation are questionable, however, because, 
as pointed out by Rosenblat and Herbert [3], a linear 
analysis might not be applicable. 

If we nondimensiona~ze in the usual manner, cf. Venezian 
[l], then, following the development in Chapter III. 
Section 25, of Chandrasekhar [4]*, we can obtain the 
perturbation equations in the form 

(8) 

This communication is a preliminary study of the case 
when the fluid is rotating. For small Prandtl numbers, 
convection can begin in an oscillatory manner (i.e. the 
principle of exchange of stabilities does not hold), and the 
modulation might be expected to have more of a resonant 
effect. However, we find that significant deviation occurs 
even for a Prandtl number of unity, which is the only value 
considered in this note. For a Prandtl number of unity, a 
simplified equation for the disturbance velocity results, but a 
meaningful result is still obtained. 

It is clear that the case Pr = 1 is rather special because we 
can readily combine equations (7-9) to give the following 
equation 

( > -g-v2 
- 

ww+7-a$= -&2&v. (10) 

which is of second order in time, whereas the more general 
case (Pr # 1) is of third order in time. Although this might 
seem too special, it does allow comparison to be made 
directly to thenon-rotating case, which is of the same order in 
time 

*Pratt & Whitney Aircraft, United Aircraft Corporation, *The centrifugal force is ignored here, which implies 
East Hartford, Connecticut, U.S.A. @‘R/g) << 1, where R is a characteristic horizontal 

TMechanics and Structures Department, University of dimension. The effects of this force for the unmodulated 
California, Los Angeles, California, U.S.A. case are discussed, for instance, by Homsy and Hudson [S]. 
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FIG. 1. Effect of modulation on the critical Rayleigh number. 

For “free-free” surfaces, the boundary conditions are (cf. 
Chandrasekhar [4]), 

a*w a4w 
w=-=-= 0 at z =O,l. 

az2 az4 
(11) 

METHOD OF SOLUTION AYD RESULTS 

The basic parameters in the problem are the Rayleigb 
number Ra, the Taylor number Ta, the amplitude of 
modulation E and the nondimensional frequency 
O( = (#c/K), which results from the fact that we have used 
the usual method of nondimensionalizing the time on the 
basis of L and K. 

We assume that E << 1, in the manner of Venezian [l] and 
expand in terms of E, i.e. we let 

W = W~+EWI+E*W~+... 

Ra=Ra0+eRaI+e2Ra2+... 

(124 

(12b) 

for fixed values of Ta and o. The condition which determines 
the RajCj = 1,2,. .) is simply that the solution exhibits no 
secular growth in time, i.e. that it is periodic in time. The 
theory is closely associated with that of the Mathieu 
equation, and the details are described fully in Venezian’s 
paper [l]. The change in the Rayleigh number is then 
calculated for various o for fixed values of Ta, and the 
procedure is repeated for various Ta. 

It turns out that Ra, = 0, and therefore the natural 
presentation is in terms of 

Ra, -- “* = (Rae), 
(13) 

where A is a measure of the enhancement of stability. The 
results are shown in Fig. 1. For Ta = 0, the curve agrees 
with that shown in Fig. 3 of Venezian [l], when we redefine 
his E so as to agree with ours. The value for A decays 
monotonically as a function of o, but it is positive, indicating 
that the critical Rayleigh number is increased by modulation. 
The same remains true for Ta = lo”, although the value of A 
is greater and does not decay as rapidly with o. For 
Ta = lo’, however, A does not decay monotonically in a 
positive manner but becomes negative for w > 42, 
approximately. Hence, a lower value of the critical Rayleigh 
number results, with a maximum destabilization occurring 
for w z 80. 

The results for w + 0 are subject to the same criticism 
regarding use of linear analysis as in the case without 
rotation. For these larger values of w at which destabilization 
occurs, however, this criticism cannot be made. 

It is therefore of interest to ask how the mechanism of 
instability comes about. A rotating fluid can exhibit inertial 
waves, with a characteristic dimensional frequency no 
greater than 2R (6. Chapter III, Section 23, of 
Chandrasekhar [4]). The nondimensional frequency can be 
expressed as 

w*L_? 
o_l_= 

K 

so, for Pr = 1, we have the result 

(15) 

As shown in Fig. 1, the maximum destabilization occurs for 
(w*/2R) = 0.25, i.e. the modulation frequency is within the 
range of inertial wave frequencies. It is therefore suggested 
that the destabilization can be associated with the incipient 
excitation of inertial waves. The maximum amount of 
destabilization for Ta = 10’ is roughly of the same order as 
the maximum amount of stabilization achieved in the quasi- 
steady limit, for Ta = 0, suggested by Rosenblat and 
Herbert [3], e.g. see their Fig. 4 for E = 0.1. 
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